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Equivalence of MTF of a turbid medium and radiative
transfer field
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The equivalence of the modulation transfer function (MTF) of a turbid medium and the transmitted
radiance from the medium under isotropic diffuse illumination is demonstrated. MTF of a turbid medium
can be fully evaluated by numerically solving a radiative transfer problem in a plane parallel medium.
MTF for a homogenous single layer turbid medium is investigated as illustration. General features of the
MTF in the low and high spatial frequency domains are provided through their dependence on optical
thickness, single scattering albedo, asymmetrical factor, and phase function type.
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Depending on its optical properties, multiple light scat-
tering in a turbid medium to some degree, degrades imag-
ing quality. Because the medium is generally considered
as a component of the imaging system, the modulation
transfer function (MTF) is usually utilized to describe
its effect on imaging. MTF is the module of the more
general optical transfer function (OTF). The quantita-
tive knowledge of MTF of a turbid medium is important
in designing an imaging optical system, imaging process-
ing, and other related applications.

Although theoretical analysis, numerical simulation,
and measurement in real fields have been employed, the
general analytical solution for MTF has not been ob-
tained. The currently and widely used MTF expres-
sion is the result of small-angle-approximation (SAA)
analysis[1,2]. According to SAA result, MTF depends
only on the scattering and absorption optical thickness.
However numerical simulation and experimental results
reveal that the MTF is affected by other factors such
as those of the whole scattering properties of the turbid
medium[3−9] and even instruments[10−14]. Moreover, the
SAA approximation is valid only for a relatively narrow
frequency range. Thus, it is necessary to obtain the MTF
of a turbid medium in a general manner.

The imaging process in a turbid medium is a problem
of multiple scattering and strong forward scattering. It
is actually a specific problem of radiative transfer. The
general feature of MTF of a turbid medium could be re-
lated to the imaging problem of light source at infinity.
MTF of a turbid medium, as will be demonstrated, is
equivalent to the transmitted radiance from the medium
with isotropic diffuse illumination. Based on this theo-
retical foundation, the MTF of a turbid medium can be
fully evaluated through the radiative transfer equation
(RTE).

For incoherent imaging, the relation of optical intensi-
ties I and I0 at positions ~ρ and ~ρ′ in the image and object
planes is obtained through the point spread founction
(PSF) as[15]

I(~ρ) =
∫

P (~ρ ′ − ~ρ) I0(~ρ ′)d~ρ ′. (1)

Taking the Fourier transform of the above equation, we
obtain

Î(~ν) = OTF(~ν)Î0(~ν), (2)

where Î(~ν) and Î0(~ν) are the spatial spectra of the in-
tensities I and I0 at spatial frequency ~ν, and OTF is the
OTF of the whole imaging system which relates to the
PSF as

OTF(~ν) =
∫

P (~ρ) exp (−2πi~ν · ~ρ) d~ρ. (3)

If the quantitative values of the optical fields I and I0

are known, OTF could be evaluated directly based on
Eq. (2), i.e.,

OTF = Î(~ν)/Î0(~ν). (4)

Consequently, MTF can be obtained directly by employ-
ing the module of the OTF.

Without the inclusion of an optical system, the MTF
is solely intended for the medium. The use of a plane
parallel random medium with a specific incident light in-
tensity distribution to derive the outgoing light intensity
could be considered as imaging in the infinite distance.
This is a typical problem of radiative transfer[16].

The radiative transfer problem is illustrated in Fig. 1.
The plane parallel medium consists of several homoge-
nous layers. The optical properties of each layer are
described by a series of parameters, such as optical
thickness τ , single scattering albedo ω, scattering phase
function P , etc. The incident light could be any kind of
distribution, and if it is an axially symmetrical distribu-
tion, the outgoing light will be axially symmetrical. The
Fourier transforms of both the source and the outgoing
light fields become Hankel transforms, and the MTF
obtained from Eq. (4) is a function of the polar angle.

Numerical evaluation of Eq. (4) may encounter several
technical difficulties if the distribution of incident light
field is not properly chosen. However, if the incident
light is chosen as an isotropic diffuse field, the OTF can
be related directly to the outgoing field distribution and
thus, evaluation of Eq. (4) becomes unnecessary. For an
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Fig. 1. Radiative transfer schematic for a plane parallel tur-
bid medium.

isotropic incident source with unit intensity I0(~ρ ′) ≡ 1,
the image intensity can be expressed, based on Eq. (1),
as

J(~ρ) =
∫

P (~ρ− ~ρ ′) d~ρ ′. (5)

Since the PSF is the inverse Fourier transform of OTF,

P (~ρ) =
∫

OTF(~ν) exp (2πi~ν · ~ρ) d~ν. (6)

Thus,

J(~ρ) =
∫

P (~ρ ′ − ~ρ) d~ρ ′

=
∫ ∫

OTF(~ν) exp [−2πi~ν · (~ρ ′ − ~ρ)] d~νd~ρ ′. (7)

On the other hand, from the definition of Dirac delta
function, we derive

J(~ρ) =
∫

J(~ρ ′)δ (~ρ ′ − ~ρ) d~ρ ′

=
∫ ∫

J(~ρ ′) exp [−2πi~ν · (~ρ ′ − ~ρ)] d~νd~ρ ′. (8)

Comparing the two equations above, we obtain directly

OTF(~ν) = J(~ρ ′), (9)

where the variable ~ν takes an identical value of the vari-
able ~ρ ′. Since ~ν and ~ρ ′ are quantities in spatial frequency
domain and spatial domain, respectively, they could take
identical values only if they are unit-less. In this letter,
it is to our advantage that we are dealing with a prob-
lem of imaging at infinite place with an isotropic incident
source at infinity. In this case, the absolute positions in
both the object and image planes are unnecessary and
an angular representation could be used, i.e., ~ρ can be
replaced by tan θ, where θ is the polar angle of ~ρ, and
the spatial frequency ~ν can be replaced by the angular
spatial frequency Ω . Since tan θ is unit-less, the above
requirement will be satisfied. Therefore, we have

OTF(Ω) = J (tan θ). (10)

In the small angle limit tan θ ∼ θ, when θ is taken the
radian as its unit, the OTF takes 1/rad as its unit. Equa-
tion (9) or (10) is just the equivalence of MTF of a turbid

medium in relation to the transmitted radiance from the
medium with isotropic diffuse illumination.

Using this equivalence, full MTF in the whole angular
spatial frequency range can be obtained through numer-
ical solution of the radiative transfer problem. Thus,
MTF of a single homogenous turbid layer is analyzed
for illustration. The radiative transfer problem will be
solved by the discrete ordinate method via the DIS-
ORT algorithm[17]. A Henyey-Greenstein phase function
model PHG(Θ) = (1 −g2)/(1 +g2−2g cosΘ)3/2 with an
adjustable asymmetric factor g is assigned to the turbid
medium, where Θ is the scattering angle. The smaller
the value of g is, the more scattered light intensity will be
in the side directions. This model has often been used to
simulate scattering phase function with a certain degree
of scattering asymmetry.

Several general features of MTF are reflected in the
following figures. The variations of MTFs for the optical
thickness τ from 10−3 to 1 are plotted in Fig. 2, and
the asymmetric factor g is set as 0.99. In Fig. 2(a),
MTFs are plotted in a wide angular frequency interval
and in Fig. 2(b), in a narrower interval (0, 100). For a
relatively small optical thickness τ =10−3, MTF is close
to unity at lower frequency, and decreases with frequency
until a critical frequency of approximately 5 000 1/rad
is achieved. Beyond the critical frequency, the MTF is
almost constant. Thus, only the behavior of MTF below
the critical frequency is important. The larger the opti-
cal thickness is, the lower the critical frequency and the
steeper the tendency to descend of the MTF with fre-
quency below the critical value. In the case of the optical
thickness being greater than 0.01, the critical frequency
will be several ten 1/rad.

Fig. 2. MTF of a homogenous turbid medium with different
optical thicknesses.
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Fig. 3. MTF of a homogenous turbid medium with different
asymmetric factors. Optical thickness is 0.1.

MTFs for four values of asymmetric factor g at the op-
tical thickness τ = 0.1 are plotted in Fig. 3. In Fig. 3(a),
the MTFs are plotted in a wide angular frequency inter-
val and in Fig. 3(b), in a narrower interval (0, 100). The
effect of the scattering asymmetry produces different be-
haviors at lower and higher frequencies. Below the crit-
ical frequency, the smaller the asymmetric factor is, the
steeper the tendency to descend of MTF in relation to
frequency. Above the critical frequency, the smaller the
asymmetric factor, the larger the value of MTF.

Although these results may provide important features
about the MTF of a turbid medium, the application of
the equivalence principle and the RTE computational
procedure to the scenario directly to obtain the MTF
for more complicated turbid media remains a better op-
tion. A practical medium may consist of a number of
layers, or even has a reflecting bottom, which could be
encountered in remote sensing in the atmosphere of the
earth. However, the efficiency of the DISORT algorithm
facilitates the acquisition of the MTF of any complicated
medium particularly if quantitative optical information

about the scattering particles are available.

In conclusion, based on the MTF of a turbid medium
reported in this letter, and the theoretical solution of the
MTF of a turbulent medium obtained previously[18], the
MTFs of random media, both turbulent and turbid are
completely solved quantitatively. Application of adaptive
optics on turbulence compensation has achieved consider-
able progress[19,20]. However, no counterpart technology
for the turbid media exists. The general MTF feature
of the turbid medium may provide useful reference for
developing a new kind of technology.
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